Copied to
clipboard

G = C3xC23.11D6order 288 = 25·32

Direct product of C3 and C23.11D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC23.11D6, C62.176C23, D6:C4:11C6, C6.21(C6xD4), (C2xDic6):3C6, C6.180(S3xD4), (C4xDic3):12C6, (C6xDic6):27C2, (C2xC12).267D6, C6.D4:5C6, C23.11(S3xC6), Dic3.1(C3xD4), (C22xC6).29D6, (Dic3xC12):33C2, (C3xDic3).28D4, C6.119(C4oD12), (C6xC12).244C22, C32:13(C4.4D4), (C2xC62).52C22, C6.114(D4:2S3), (C6xDic3).122C22, C2.10(C3xS3xD4), C6.9(C3xC4oD4), (C3xD6:C4):30C2, (C3xC22:C4):7C6, C22:C4:5(C3xS3), (C2xC4).28(S3xC6), (C2xC3:D4).4C6, C3:2(C3xC4.4D4), C22.44(S3xC2xC6), (C3xC22:C4):13S3, (C2xC12).54(C2xC6), C2.12(C3xC4oD12), (C3xC6).209(C2xD4), C2.9(C3xD4:2S3), (C6xC3:D4).11C2, (S3xC2xC6).55C22, (C3xC6).99(C4oD4), (C22xS3).5(C2xC6), (C22xC6).26(C2xC6), (C2xC6).31(C22xC6), (C3xC6.D4):22C2, (C32xC22:C4):11C2, (C2xC6).309(C22xS3), (C2xDic3).22(C2xC6), SmallGroup(288,656)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC23.11D6
C1C3C6C2xC6C62S3xC2xC6C3xD6:C4 — C3xC23.11D6
C3C2xC6 — C3xC23.11D6
C1C2xC6C3xC22:C4

Generators and relations for C3xC23.11D6
 G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e6=c, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, ebe-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=de5 >

Subgroups: 418 in 169 conjugacy classes, 62 normal (58 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, C32, Dic3, Dic3, C12, D6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C2xD4, C2xQ8, C3xS3, C3xC6, C3xC6, Dic6, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC6, C22xC6, C4.4D4, C3xDic3, C3xDic3, C3xC12, S3xC6, C62, C62, C4xDic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC22:C4, C2xDic6, C2xC3:D4, C6xD4, C6xQ8, C3xDic6, C6xDic3, C3xC3:D4, C6xC12, S3xC2xC6, C2xC62, C23.11D6, C3xC4.4D4, Dic3xC12, C3xD6:C4, C3xC6.D4, C32xC22:C4, C6xDic6, C6xC3:D4, C3xC23.11D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C4oD4, C3xS3, C3xD4, C22xS3, C22xC6, C4.4D4, S3xC6, C4oD12, S3xD4, D4:2S3, C6xD4, C3xC4oD4, S3xC2xC6, C23.11D6, C3xC4.4D4, C3xC4oD12, C3xS3xD4, C3xD4:2S3, C3xC23.11D6

Smallest permutation representation of C3xC23.11D6
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(2 46)(4 48)(6 38)(8 40)(10 42)(12 44)(13 32)(14 20)(15 34)(16 22)(17 36)(18 24)(19 26)(21 28)(23 30)(25 31)(27 33)(29 35)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 45)(2 46)(3 47)(4 48)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 43)(12 44)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 25)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 14 39 33)(2 32 40 13)(3 24 41 31)(4 30 42 23)(5 22 43 29)(6 28 44 21)(7 20 45 27)(8 26 46 19)(9 18 47 25)(10 36 48 17)(11 16 37 35)(12 34 38 15)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (2,46)(4,48)(6,38)(8,40)(10,42)(12,44)(13,32)(14,20)(15,34)(16,22)(17,36)(18,24)(19,26)(21,28)(23,30)(25,31)(27,33)(29,35), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,45)(2,46)(3,47)(4,48)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,39,33)(2,32,40,13)(3,24,41,31)(4,30,42,23)(5,22,43,29)(6,28,44,21)(7,20,45,27)(8,26,46,19)(9,18,47,25)(10,36,48,17)(11,16,37,35)(12,34,38,15)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (2,46)(4,48)(6,38)(8,40)(10,42)(12,44)(13,32)(14,20)(15,34)(16,22)(17,36)(18,24)(19,26)(21,28)(23,30)(25,31)(27,33)(29,35), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,45)(2,46)(3,47)(4,48)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,39,33)(2,32,40,13)(3,24,41,31)(4,30,42,23)(5,22,43,29)(6,28,44,21)(7,20,45,27)(8,26,46,19)(9,18,47,25)(10,36,48,17)(11,16,37,35)(12,34,38,15) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(2,46),(4,48),(6,38),(8,40),(10,42),(12,44),(13,32),(14,20),(15,34),(16,22),(17,36),(18,24),(19,26),(21,28),(23,30),(25,31),(27,33),(29,35)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,45),(2,46),(3,47),(4,48),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,43),(12,44),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,25)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,14,39,33),(2,32,40,13),(3,24,41,31),(4,30,42,23),(5,22,43,29),(6,28,44,21),(7,20,45,27),(8,26,46,19),(9,18,47,25),(10,36,48,17),(11,16,37,35),(12,34,38,15)]])

72 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D4E4F4G4H6A···6F6G···6O6P···6W6X6Y12A12B12C12D12E···12R12S···12Z12AA12AB
order12222233333444444446···66···66···6661212121212···1212···121212
size1111412112222246666121···12···24···4121222224···46···61212

72 irreducible representations

dim111111111111112222222222224444
type++++++++++++-
imageC1C2C2C2C2C2C2C3C6C6C6C6C6C6S3D4D6D6C4oD4C3xS3C3xD4S3xC6S3xC6C4oD12C3xC4oD4C3xC4oD12S3xD4D4:2S3C3xS3xD4C3xD4:2S3
kernelC3xC23.11D6Dic3xC12C3xD6:C4C3xC6.D4C32xC22:C4C6xDic6C6xC3:D4C23.11D6C4xDic3D6:C4C6.D4C3xC22:C4C2xDic6C2xC3:D4C3xC22:C4C3xDic3C2xC12C22xC6C3xC6C22:C4Dic3C2xC4C23C6C6C2C6C6C2C2
# reps112111122422221221424424881122

Matrix representation of C3xC23.11D6 in GL6(F13)

900000
090000
001000
000100
000010
000001
,
100000
010000
001000
0051200
000010
00001012
,
100000
010000
0012000
0001200
000010
000001
,
100000
010000
001000
000100
0000120
0000012
,
900000
030000
005000
000500
000015
0000012
,
030000
900000
008200
000500
000080
000025

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,5,0,0,0,0,0,12,0,0,0,0,0,0,1,10,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[9,0,0,0,0,0,0,3,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,5,12],[0,9,0,0,0,0,3,0,0,0,0,0,0,0,8,0,0,0,0,0,2,5,0,0,0,0,0,0,8,2,0,0,0,0,0,5] >;

C3xC23.11D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{11}D_6
% in TeX

G:=Group("C3xC2^3.11D6");
// GroupNames label

G:=SmallGroup(288,656);
// by ID

G=gap.SmallGroup(288,656);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,176,1598,555,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^6=c,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<